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ABSTRACT

An algorithm is described for minimizing an arbitrary scalar cost
function c(x) with respect to an n-vector x. At each stage of the minimiza-
tion, the cost function is approximated by a quadratic form in the region
about the current lowest-cost point., The next trial point is taken as the
minimum of this quadratic form within a hypercube in n-space centered
at the current lowest-cost point.

The procedure has quadratic convergence, but differs from other
quadratically convergent minimization algorithms in that (1) minimiza-
tion is over a sequence of n-dimensional regions rather than over a
sequence of one-dimensional straight lines (2) the local approximation to
the cost surface need not be positive definite (3) each approximation depends
only on true cost values and is independent of prior approximations
(4) after each evaluation of cost at a trial point, the trial point is added, and
a point distant from the current lowest-cost point is deleted, from the
set of points to which the next quadratic form will interpolate. The al-
gorithm takes relatively large steps, and is forced by (4) to learn from
its failures,

Test results are presented for n = 2 using Rosenbrock's parabolic

valley as the cost function.



Introduction

Recent surveys of function minimization algorithms [1], [2], show
the superiority of algorithms having the property of quadratic convergence,
i. e., the property that if the cost function is exactly a quadratic form,
the computation terminates at the exact minimum in a finite number of steps,
These algorithms involve a sequence of one-dimensional searches along a
sequence of straight lines, In the last cycle of one-dimensional search,
the directions of search are mutually conjugate. This last cycle of search
along conjﬁgate directions yields quadratic convergence [3].

In any search procedure, values of cost and possibly gradients of cost
are computed at a sequence of points, Each datum consisting of a value of
cost band associated x, or a component of the gradient and associated x,
furnishes information that could be used as an equation of condition for
the coefficients of a local quadratic model in n-space. As soon as the
number of data gathered on the cost function equals the number of coeffi-
cients required in the local quadratic model, it is usually possible to
compute these coefficients and to find the minimum of the quadratic model
within some region in which the model is assumed to be valid.

If the cost function is a positive definite quadratic form, it will be
modeled exactly. The minimum of the quadratic model will be the minimum
of the cost function, Thus any algorithm which directly computes and
minimizes a local quadratic model has quadratic convergence,

The number of data required to define the local quadratic form is

the minimum number of data required to give an algorithm the property of

See Reference [5], pp. 72-73 for the distinction between quadratic con-
vergence in this sense, and the asymptotic quadratic behavior of an itera-
tion such as Newton's method for finding the root of an equation.
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quadratic convergence. All the algorithms based on a sequence of one-
dimeﬁsional searches use more than this minimum numbher of data. This
suggests the possibility that in minimizing a general (i. e., non-quadratic)
cost function, an algorithm based on local quadratic models may require
less data on the cost function than algorithms based on one-dimensional
searches,

As a test of this conjecture, local quadratic models are used in the
problem of function minimization without derivatives, using Rosenbrock's
valley [4] as the cost function, At each stage, a local quadratic model is
minimized over a square constraint region, giving rise to a Sequence of
Quadratic Programming problems. (Hence the name of the algorithm to

be described is SQP.)

Description of the SQP Algorithm for n = 2

In the local quadratic model

a(x) = #xT Ax +bT

x +d | (1)
there are Q n(n + 1) distinct elements in the symmetric matrix A, n elements
in the veptor b, and one element in the scalar d, or a total of

N = #(n + 1)(n + 2) (2)
‘unknown coefficients to be determined by fitting q(x) to c(x) at a set of
points xi, i=1l,,,.,N. Inaplane, n =2 and N = 6,

The algorithm proceeds as follows:

1. Initialize the search by evaluating cost at the starting point x and
at five additional points obtained by incrementing the starting point by
vectors (-a,0), (a,0), (0, ~-a), (0,a) and (a, a).

2, Define the basepoint as the lowest-cost point of these 8ix points.

Store the coordinates of the basepoint and cost at the basepoint into the

first row of a table of points and costs, In the second row, store the point
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nearest the basepoint and cost at that point. Continue storing points and
costs ordered on distance from the basepoint in successive lower rows,
After a translation of coordinates which places the origin at the basepoint,

the table has the form

0 0 c(0)
x2 x2 c(xZ)
1 2
3 3 3
X, X5 c(x)
6 6 6
X1 Xy c(x")
10 10 C(XIO)
*1 *1

Figure 1. Table of Points and Costs
The entries satisfy

c(0) = c(xY) i=2,...,10
(3)
x]T %' = []T & 1si<j=10
This table is arbitrarily limited to ten rows, and is reordered to satisfy
the above relations whenever a new basepoint is chosen. The table is
initialized with entries in the first six rows, and acquires entries in the

lower rows as the search progresses.

Only the first six rows participate in forming the local quadratic model.

The remaining four rows constitute a residual memory which may be called

upon in the event that a basepoint is found near one of these four points.
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It will be shown that each new point first appears in one of the six top rows,
gradually goes lower in the table as the basepoint moves away from it,
and is finally discarded.

3. With the origin at the basepoint, d in equation (1) is simply c(0).

b,, b

To find ajpr 3120 2350 Py by, for the quadratic model, solve the five

equations of condition

#(xT Axl + BT k' = () - 4 i=2,3,...,6 (4)
where xi and c(xi) are the points and costs in the second through sixth rows
of the table of points and costs. The system (4) is non-singular for the
initial points specified in step (l.) due to the pattern of these points. When
the system (4) was solved with other sets of five points generated in the
course of the Rosenbrock problem, no singularity was ever encountered.

4. As a check on the A, b, d just computed, evaluate the quadratic
model q(x) to verify that it equals c(x) at the points of interpolation. In
the Rosenbrock problem, this condition was always satisfied to six digits.

In the following computations, the region of validity of the quadratic
model will be defined as a certain square centered at the current basepoint.
The minimum of the quadratic form over this square constraint region will
be found by solving a quadratic programming problem.,

Let X in be the solution of the quadratic programming problem. If
the true cost c(xmin) is less at X in than at any previous trial point, then
X in becomes the new basepoint and is placed in the first row of the table of
points and costs, If C(xmin) is not less than cost at the current basepoint,
then (as will be shown) the ordering of points by distance from the current
basepoint causes X in and C(xmin) to be entered in the table in one of the
rows 2,3,4,5, or 6. Since the first six rows determine the next quadratic

model, the recent trial X in always influences the next model.
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Regardless of whether or not C(Xmin) represents a reduction of cost,
a new quadratic model, a new constraint region, and hence a new quadratic
programming problem, are defined. Thus each successive trial point
(after the initial six) is obtained by solving a quadratic programming problem.
The algorithm as a whole is a sequence of quadratic programming problems.

5. Let r be the distance* from the basepoint to the farthest of the
five points nearest the basepoint, i.e.,

r= (x0T (5)

Let o be a constraint region reduction factor, Set a =1 for the first quadra-
tic programming problem. Within the sequence of quadratic programming
problems, set a = 1 if the previous quadratic programming problem has
located a new lowest-cost point. If the previous quadratic programming

problem failed to locate a new lowest-cost point, set

a’new = 95a‘old (6)

6. Define a square constraint region centered at the basepoint, with
corners at (+G, + G) relative to the basepoint (0, 0), where the semi-side
G is computed as

G =299 ra (7)
Ny

Then limit Gby G= G , where G is an appropriate bound for a
max max
particular problem.
7. Minimize the local quadratic model over the square constraint
region. This is a well-posed quadratic programming problem regardless

of whether or not the quadratic form is positive definite, The minimum

Ve

Distance may be measured relative to an arbitrary metric, here taken
as the identity matrix,
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x . may lie on a boundary or in the interior of the square., As conver-
min

gence is approached, the minimum will occur in the interior of the square.
8. Evaluate C(Xmin)' If this is less than cost at the current basepoint,

then x__ . becomes the new basepoint. In the table of points and costs, x_ .
min min

and c(xmin) are placed in the first row, and other points are reordered
according to their distances from the new basepoint.
Figure 2 illustrates the events corresponding to a reduction of cost.
- " '
First the basepoint x = 0 and adjacent points X X, Xgo xe, Xer and their
associated cost values participate in forming a local quadratic model.

Suppose a =1 at this k-th stage. The distance from the basepoint to X is

rk. The constraint region is a square with sides parallel to the coordinate

axes, inscribed in a circle of radius . 999rk centered at the basepoint, The
minimum of the quadratic form over the constraint region is found at X in’

and c(x proves to be less than cost at all previous trial points, Now

min)
points are reordered by distance relative to the new basepoint X _in'

Points x . X,, X b'e X., X articipate in forming a new quadratic
min’ ~ 4’ Ta’ » Xyr e P P g 4

C

model, The new rk+1 is the distance from x__ . to X, Since the previous
min

quadratic programming problem reduced cost, a =1, and the new con-

straint region is the square inscribed in the circle of radius . 999rk+1

centered at x_ . .
min
9. Suppose that X in’ the minimum of the quadratic model q(x),
proved not to be a minimum of the true cost function, c(x). Then x_ is
retained as basepoint, as shown in Figure 3, A new local quadratic model is
k+1 ., .
» X The new r is the distance from x

basedonx , x,, X , X,, X .
a c d min

bl

to X - Because the previous trial did not reduce cost, a =.95. The new

%
The letter subscripts denote fixed points regardless of distance from the
basepoint, in contrast to the numerical superscripts of Figure 1, which
denote ordering by distance from the current basepoint.
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Xmin
Xe
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Xh

Xe

Xf

K- th Table of Points and Costs k+1 st Table of Points and Costs
Xg c{Xq) Xmin C((Xmin)
x.
Xb Egib)) Influence :d g(id; influence
¢ c local quadratic 0 a local quadratic
Xd c(xd) model Xc clxc) model
Xe cxe) Xi c(xj)
Xf c{xf) Xb c(xp)
Xxg  clxg) Xg c(xq)
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Xi clxj) Xh c(xp)
Xj clxj) X§ cx¢)
FIG. 2 THE NEW TRIAL POINT Xmin REDUCES COST
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K—th Table of Points and Costs k+{ st Table of Points and Costs
Xa c((XQ)) Xg c(xq)
X c(x X c(x
xb c(xb) Influence b CE b; Influence
¢ ¢ local quadratic Xc Xe local quadratic
Xd c(xd) [ model Xd c(xg) model
Xe clxe) Xmin ¢ (xmin)
Xf c(x¢) Xe cxe)
Xg cxgq) Xf c(x¢)
Xh C(Xh) Xg C(Xg)
Xi c(xj) Xh c(xp)
Xj c(xj) Xi c(xi)

FIG. 3 THE NEW TRIAL POINT Xmin FAILS TO REDUCE COST
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constraint region is the square inscribed in the circle of radius
(.999)(. 95)1-k+1 centered at X .

10. The shape of the constraint region was chosen to be a square because
this simplifies the quadratic programming problem., The particular formula
(7) for the size of the square was chosen to force the algorithm to "'learn"
quickly from failures,

Suppose the constraint region had been permitted to be so large that
its corner was farther from the basepoint than the farthest of the five closest
points used to form the interpolating quadratic form, Suppose the minimum
of the quadratic form occurred at a corner, and that this point failed to
reduce cost, Then the next cycle would begin with the same basepoint, with
the same five points closest to the basepoint, and hence with the same quadra-
tic form. The constraint region would have contracted, but the quadratic
form would be unchanged. After several (wasted) cycles the constraint
region would have shrunk sufficiently to force inclusion of a new point as one
of the closest five. In contrast, formula (7) forces immediate inclusion of
the failure point in determining the next quadratic form. Formula (7)
ensures that every point in the constraint region, and hence X in’ is closer
to the basepoint than the farthest of the five points used in defining the
quadratic form. Thus if the new trial point fails to reduce cost, and the
original basepoint is retained, the new trial point is added, and the most dis-
tant of the original five points is deleted, from the set of points used to form

the next quadratic model.
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Numerical Comparison of SQP with Other Function Minimization Methods

Which Do Not Require Derivatives

A frequently used cost function for testing minimization algorithms is

the parabolic valley of Rosenbrock [4].

(8)

_ 2.2 2
c(x) = 100(x1 - xZ)

+ (1 -xl)

For this cost function, Powell [3] and Stewart [5] report data which are
reproduced in Tables 1 and 2, Table 3 is a computer printout of data
obtained using SQP. The number of function evaluations required by SQP
to reach the minimum is about . 38 times the number required by Stewart's
method. The computer time required on the IBM 7094 for setting up and

solving the 62 quadratic programming problems was about . 8 1.1 minute.

Application in Higher-Dimensional Minimization Problems

A virtue of SQP is its efficient use of each datum of information con-
cerning the cost function, so that the overall minimization may be completed
with relatively few data. A defect is the computational effort required to
fit the quadratic model,

In n-space, the number of data in addition to cost at the basepoint
required to fit a local quadratic model are

N-1=%n+1)(n+2)-1=4%n(n+3)
The #n(n + 3) coefficients of the quadratic model are obtained by solving
#n(n + 3) linear equations. The computational work in solving a linear system
varies as the cube of the dimension [6]. Hence the computational work per
quadratically convergent cycle varies as the sixth power of n.

The dollar cost of function minimization by SQP is approximately
]3

D =N {k(n+1)(n+2)k) + [ +3)] 7k, +(n - 1)°k,)
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Function
Iteration Values X, x, f(xl R XZ)
0 1 -1-2000 | 1-0000 24- 2000
1 14 -0-9912 | 0-9927 3-9753
2 25 -0- 7674 | 0-5485 3. 2863
3 35 -0-5017 | 0-2064 2- 4608
4 46 -0-2840 | 0°0307 1-8978
5 57 -0- 0123 | -0- 0408 1- 1927
6 71 0-2568 | 0-0369 0- 6366
7 84 0-4379 | 01624 0- 4026
8 97 0- 6810 | 0-4478 0- 1274
9 109 0-8341 | o0-6818 0- 0469
10 122 0-8894 | 0-7948 0- 0137
11 131 1- 0014 | 0-9997 0- 0010
12 142 0- 9926 | 0-9850 6% 10-3
13 151 1- 0000 | 1-0000 7 x 10-10

Table 1. Powell's Descent of the Rosenbrock Valley [3]

Number of
Iteration function )

No. evaluations

0 1 2.4 10}

2 13 3.8 100

4 26 2.9 100

6 39 1.9 100

8 56 7.1 10-1
10 70 2,9 10-!
12 83 1.4 10-1
14 97 5.4 10-2
16 111 1.8 10-2
18 124 1.3 10-3
20 132 1.7 10-6
22 145 2.8 10-10
23 152 1.0 10-11
24 163 9.0 10-12
25 169 3.3 10-12
26 174 3,3 10-12

Table 2, Stewart's Descent of the Rosenbrock Valley [5]
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Run Summary Table

X

-0. 1700000E 01
-0.1200000E 01
-0. 7000000E 00
-0.1200000E 01
-0. 1200000E 01l
-0, 1200000E 01
-0.9568116E 00
-0, 7486519E 00
-0. 7486519E 00
-0.6719982E 00
-0.6719982E 00
-0,6719982E 00
-0.6382675E 00
-0, 6382675E 00
-0, 6382675E 00
-0.4309351E 00
-0.4309351E 00
-0.4309351E 00
-0. 3445203E 00
-0, 3445203E 00
-0.1235784E 00
-0.1235784E 00
-0.1235784E 00
-0.1235784E 00
0.5012290E-01
0.5012290E-01
0.2273967E 00
0.2273967E 00
0.2273967E 00
0. 2273967E 00
0.2273967E 00
0. 3931369E 00
0. 5699951E 00
0.5699951E 00
0.4681424E 00
0. 4855394E 00
0. 6000640E 00
0. 6000640E 00
0. 6000640E 00
0. 6697577E 00
0. 6397044E 00

oNoNeoloReoloRoNoloNoNoloNoNo o oo o o i

Y

. 1000000E 01
. 1000000E 01
. 1000000E 01
. 1500000E 01
. 5000000E 00
. 1500000E 01
. 1000000E 01
. 6029354FE 00
.6029354E 00
. 4597000E 00
. 4597000E 00
.4597000E 00
. 4055506E 00
. 4055506E 00
. 4055506E 00
.1982181E 00
.1982181E 00
.1982181E 00
.1652721E 00
. 1652721E 00
.1759378K-01
. 1759378E-01
.1759378E-01
. 1759378E-01
.1311605E-01

0.1311605E-01

0000000 OODOOOOOO

.9037245E-01
.9037245E-01
., 9037245E-01
. 9037245E-01
.9037245E-01
. 1488131E 00
. 2854609E 00
. 2854609E 00
.2230931E 00
.2363176E 00
. 3523353E 00
. 3523353E 00
. 3523353E 00
.4700739E 00
.4172360E 00

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

SQP Descent of the Rosenbrock Valley

Cost

. 3645000E
. 2420000E

2890000KE

. 5200000E
. 9320000E
. 5200000E
.4543332E
. 3238033E
. 3238033E
. 2802169E
.2802169E
.2802169E
. 2684257E
. 2684257E
. 2684257E
.2063233E
.2063233E
. 2063233E
. 2024684E
. 2024684E
. 1370442E
. 1370442E
. 1370442E
. 1370442E
.9135104E
. 9135104E
. 7463998E
. 7463998KE
. 7463998E
. 7463998E
. 7463998E
. 3715816E
. 3404050E
. 3404050E
. 2844215E
.2647021E
.1659418E
. 1659418E
.1659418E
.1552787E
.1362358E

03
02
02
01
02
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
01
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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Number

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

OO OO OOOO0OO

[eReoNoRoNoNoNoNoNoNo R o Nl oo

X

. 6397044E
. 7420811E
. 7420811E

.

7420811E

. 7T723481E
. 7T723481E

8048254E

.8191585E
. 8690845E
. 8690845E

8690845E

. 9183851E
. 9623699E
. 9623699E
. 9964662E
. 9964662E
. 9964662E
. 9960381E

9960381E
9984150E

. 9991590E
. 1000015E
. 1000015E
. 9999919E
. 9999960E
. 1000001E
. 9999999E

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
0l
01
00
00
01
00

-13-

e l=ReleNek=ioReleReoleRoRoloNoNoRoNoNo ool ool o o N,

Y

.4172360E
.5475165E
.5475165E
.5475165E
.5873935E
.5873935E
.6460256E
.6699046E
.7512339E
.7512339E
.7512339E
.8377926E

9236246E

.9236246E
. 9914445E
. 9914445E
.9914445E
.9918040E
.9918040E
.9968594E
.9983379E
. 1000005E
. 1000005E
.9999819E
. 9999907E
. 1000002E
. 9999999%E

Table 3. (continued)

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
01
01
00
00
01
00

OOOOOOOOOOOOOOOOOOOOOOOOOOO

Cost

. 1362358E 00
.6752569E-01
.6752569E-01
.6752569E-01
.6015758E-01
. 6015758E-01
. 3838839E-01
. 3282820E-01
. 1879859E-01
. 1879859E-01
. 1879859E-01
. 9840279E-02
. 2056763E-02
. 2056763E-02
.2375762E-03
.2375762E-03
. 2375762E-03
. 2398718E-04
. 2398718E-04
. 2584063E-05
. 7439477E-06
. 6274457E-07
. 6274457E-07
.4103697E-09
.1820280E-09
.1982636E-11
. 4496403E-14
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where Nq is the number of quadratic programming problems required for
convergence,

Within the curly brackets, the first term represents the cost of
obtaining #(n + 1)(n + 2) data on the function. The second term represents
the cost of fitting the quadratic model. The third term represents the cost
of solving the quadratic programming problem, For large n, the second
term is dominant.

The SQP technique seems appropriate for problems in which the cost
of evaluating the function to be minimized (e. g. by actually carrying out
some experimental process) is large relative to the cost of computation to

locate a new trial point.

Conclusion

The distinguishing features of the SQP algorithm are

(1) generation of a table of true cost values at a sequence of points

(2) generation of an interpolating function which approximates the
true cost function within a region (e. g., a hypercube) centered at

the current lowest-cost point

(3) selection of a new trial point as the minimum of the interpolating
function within the region

(4) 2 method of forcing the modification of the interpolating function
by inclusion of information from each new trial, whether or not
that trial reduced cost,
The algorithm differs from current practice in the character of memory
and in the method of learning from failure,
Memory consists only of the table of points and costs. At each step,
past trials influence the location of the next trial only through the parti-

cular #(n + 1)(n + 2) points and cost values which determine the current

interpolating quadratic form. These points alone determine the local
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quadratic model and the region in which it is to be minimized. Each local
model is formed afresh, based only on ''raw data' from the table of points
and costs. Only points close to the current basepoint may determine the
quadratic model to be used in finding a new basepoint. This is in contrast
to the method of Davidon [7], [8] in which the current approximation to the
matrix of second partial derivatives of cost with respect to x reflects all
prior experience, even obsolete experience at an initial point far distant
from the current trial, This is also in contrast to Powell's algorithm [3],
in which the current set of (approximately) conjugate directions reflect all
prior experience in the search,

In the algorithms of Davidon and Powell, cost values are not retained
after their immediate use in one-dimensional minimization., They are not
used to guide the location of future trials, In contrast, in SQP, the size
of the constraint hypercube forces the new trial point to be sufficiently close
to the basepoint so that, even if the trial fails to reduce cost, the new point
will be included as one of the #n(n + 3) points closest to the basepoint, and
will play a role in determining the next interpolating quadratic form. * So
long as the basepoint remains sufficiently near this point, the point continues
to influence the interpolating quadratic form.

The influence history of a given trial point x and cost ¢(x) may be
summarized as follows: As the basepoint moves away from x (as the
result of successful trials) or more points are added nearer to the base-
point than x (as the result of unsuccessful trials) the trial point x is eventually
excluded from the set of points determining the current quadratic model.

The point remains in reserve in the table of points and costs, ready to be

" This forced revision of the consensus reached by the previous set of
#(n + 1)(n + 2) points is an important and possibly novel feature of SQP.
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consulted should a basepoint ever again come sufficiently close. Only after
the point drops to some sufficiently low status in terms of closeness to the

current basepoint, is it forgotten entirely,
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